Category Archives: Dental Autoclve

What Do You Need to Know about Sterilization

Sterilization in dentistry is very important, and dentists and dental assistants typically clean and disinfect most surfaces in a their offices and treatment rooms to help prevent the spread of germs. Disposable dental supplies Australia are also used whenever possible. Tools that are not disposable are generally scrubbed by hand and placed in a machine known as an autoclave. This machine then disinfects the tools by spraying them with very high-pressure steam, which kills most micro-organisms. Any tools that can not be subjected to high heat or moisture are usually disinfected with chemicals.

Sterilization is a necessary part of the maintenance of your dental handpiece. This process also puts your handpiece under the most stress with wear and tear. Maximum temperatures in your dental autoclave shouldn’t reach more than 140 degrees Fahrenheit. This can help to preserve your handpiece just a bit longer in between the need for service.

Any tools that can not be subjected to moisture or intense heat must be sterilized with other methods. Chemicals are often used during sterilization in dentistry as well. Some of the chemicals used to kill germs and sterilize dental tools are typically iodine or alcohol based, since both of these chemicals are very effective at killing germs.

Tools that can’t be thrown away, such as dental drills, are generally put through a very intensive dental sterilization process. First they are usually vigorously scrubbed by hand. This is usually done with hot water and detergent, and it helps remove any large particles, such as plaque. They may also be placed in a vibrating tray filled with cleaning solution, which can help remove very small particles.

Hot salt/glass bead sterilizers are not acceptable for the sterilization of items between patients. The endodontic dry heat sterilizer (glass bead sterilizer) is no longer cleared by the Food and Drug Administration (FDA). The FDA Dental Device Classification Panel has stated that the glass bead sterilizer presents “a potential unreasonable risk of illness or injury to the patient because the device may fail to sterilize dental instruments adequately.”

No national mandate requires such a log in a private practice dental office, but requirements in individual states can vary. For example, Indiana requires that sterilizer time(s) and temperature(s) be documented in the dental office infection control manual. Contact your state dental licensing agency to determine if similar requirements exist in your are. Because recordkeeping can play a role in risk management, it may be wise to consult your attorney for advice on maintaining such records.

Why You Need Dental Autoclaves

Effective and efficient infection control in the dental office is essential for the safety of patients and to ensure that productivity does not suffer. Infection control programs all include the cleaning and sterilization of reusable dental instruments and devices.

One of the dental equipment, dental autoclaves, plays a crucial role in keeping your patients healthy. Since autoclaves are involved in the sterilization of dental instruments, you simply cannot afford to invest in anything but the best. However, you should know that there are several varieties and price points of autoclaves available to suit your specific needs.

About 74% of people believe that an unattractive smile can hurt their career success, and a non-sterilized instrument will set them back even further. You cannot put your career on the line by failing to obtain the right kind of dental autoclave. The first thing you need to consider is that manual vs. automatic. Manual autoclaves are generally less expensive to buy and repair, but they take much longer to use. Automatic autoclaves cost a bit more, but they can save you tons of time and detect any malfunctions.

Maintain sterilized instruments in the pouches or wrapping in which they were sterilized. If the packaging becomes torn or wet, the items must be repackaged and heat sterilized. Avoid mingling non-sterile packages with sterile ones. There should be a visible indicator, such as chemical indicators or color-change autoclave tape on the outside of each package to allow staff to easily discern sterilized instrument packages from those that have not yet been heat-processed.

Sterilization is a necessary part of the maintenance of your dental handpiece. This process also puts your handpiece under the most stress with wear and tear. Maximum temperatures in your autoclave shouldn’t reach more than 140 degrees Fahrenheit. This can help to preserve your handpiece just a bit longer in between the need for service.

The same sets of instrument processing, personal protection equipment, and engineering and work practice control precautions can be expected to protect against all bloodborne disease agents. As such, instruments used on a known hepatitis patient need not be segregated from other contaminated instruments, can be cleaned in an ultrasonic cleaner, and do not require special post-cycle maintenance or cleaning of ultrasonic equipment.

You need to find that perfect balance of quality and cost to reach your full potential. Find a trusted dental equipment retailer online and find the dental autoclaves that work best for your current needs.

What You Need to Know about Sterilization

Dental equipment used on known hepatitis patients do not require special reprocessing procedures. The same sterilization and other infection control precautions should be used regardless of a patient’s HIV, hepatitis, or other disease status.

Ideally, all items that enter the patient’s mouth and come into contact with oral tissues should be heat sterilized. If this is not feasible because the device or instrument cannot withstand the heat sterilization process, a high-level disinfectant should be used.

Maintain sterilized instruments in the pouches or wrapping in which they were sterilized. If the packaging becomes torn or wet, the items must be repackaged and heat sterilized. Avoid mingling non-sterile packages with sterile ones. There should be a visible indicator, such as chemical indicators or color-change autoclave tape on the outside of each package to allow staff to easily discern sterilized instrument packages from those that have not yet been heat-processed.

Dry heat autoclave sterilizers have been used effectively in dental office for many years. Just as with any other sterilization method, dry heat sterilization is highly dependent upon the operator following the manufacturer’s instructions for cycle time, temperature, instrument packaging, and loading technique. Because dry air is not as efficient a heat conductor as moist heat at the same temperature, a much higher temperature is required for a dry heat unit to accomplish sterilization.

There have been some recommendations that dry heat be used only in situations where moist heat is not desirable due to the material, such as oils, powders, sharp instruments and glassware. However, the same source points out that dry heat provides excellent penetration and prevents the corrosion of metals. Since forced-air dry heat systems have very short sterilization cycles and are kind to high carbon steel instruments, they are very often used in orthodontic practices to re-process pliers and cutters.
Keep in mind that the only way to assure that sterilization parameters are routinely met is to use spore tests/biological monitors. Weekly testing is recommended.

The FDA maintains a list of products that have received clearance as chemical sterilants. The list includes information regarding proper contact time, active ingredients and reuse or shelf life. Always read instructions carefully before using a chemical germicide.

The Centers for Disease Control and Prevention (CDC), the American Dental Association (ADA), OSAP, most state dental licensing boards, and dental handpiece manufacturers all recommend heat sterilization between patient uses. Virtually all handpieces currently in production are heat-tolerant, and those that are not can be retrofitted to allow heat-processing. Autoclaving and chemical vapor sterilization are considered accepted methods of heat sterilization. High-level disinfection via chemical germicides cannot be biologically monitored to assure sterility. Further, extended contact with chemical germicides may corrode handpiece components.

The Sterilization Information about Dental Autoclave Sterilizer

Today’s busy dental practices face a serious challenge: to maintain or increase productivity while ensuring that patient safety remains a top priority. At times, these may seem like incompatible goals. Advances in dental processing equipment, however, have empowered practices to develop safer processes while realizing efficiencies and ultimately, saving money.

A cleaning and sterilization process that meets ADA and CDC guidelines is vital to an effective infection control program. Streamlining of this process requires an understanding of proper methods, materials, and devices. Many methods of instrument reprocessing are available. Use of a complete system that encompasses and fulfills all elements that are critical maximizes efficiency and minimizes risks. Closed cassette systems provide a more efficient and safer way to process, sterilize and organize instruments in a dental office – these eliminate manual steps during instrument reprocessing such as hand scrubbing and time-consuming sorting of instruments, thereby improving safety and increasing efficiency.

Care must be taken by the dental healthcare professional to ensure that all instruments are cleaned prior to sterilization, and that this is carried out in a safe manner to avoid injury and puncture wounds. Use of closed-system cassettes reduces the risk to dental healthcare professionals when executing infection control programs. When using ultrasonic cleaners, washers and sterilizers, it is important to always follow the manufacturer’s instructions.

It is also important to consult with the manufacturer of dental instruments and devices as needed to ensure complete sterilization and to avoid damage to these items. Assurance of sterility of instruments and devices can be obtained through the use of one of several tests, and these tests must be performed regularly to ensure that the sterilizer is sterilizing all instruments and devices and that these are safe for use on patients.

Parameters such as time, pressure and temperature vary according to the type of autoclave sterilizer, materials being sterilized and individual models within sterilizer brands. The first step in determining the settings for the sterilizer is to refer to the manufacturer’s instructions. Sterilizers are medical devices, requiring clearance by the Food and Drug Administration before manufacturers may offer them for sale. The FDA requires rigorous testing to ensure an adequate margin of safety in each cycle type described in the instructions. Failing to follow the instructions of the manufacturer is ill advised, since it may result in inadequate sterilization of the instruments or devices in the sterilizer. It is never appropriate to use a household device, such as a toaster oven, for sterilization of dental equipment.

The Sterilization Methods in Dentistry

Disposable dental supplies are also used whenever possible. Tools that are not disposable are generally scrubbed by hand and placed in a machine known as an autoclave. This machine then disinfects the tools by spraying them with very high-pressure steam, which kills most micro-organisms. Any tools that can not be subjected to high heat or moisture are usually disinfected with chemicals.

Disposable dental tools and supplies are some of the most important items when it comes to sterilization in dentistry. Some disposable dental supplies include bibs and masks wrapped in sterile packaging. Once these are used with one patient, they are simply thrown away.

Maintain sterilized instruments in the pouches or wrapping in which they were sterilized by autoclave sterilizer. If the packaging becomes torn or wet, the items must be repackaged and heat sterilized. Avoid mingling non-sterile packages with sterile ones. There should be a visible indicator, such as chemical indicators or color-change autoclave tape on the outside of each package to allow staff to easily discern sterilized instrument packages from those that have not yet been heat-processed.

Tools that can’t be thrown away, such as dental drills, are generally put through a very intensive dental sterilization process. First they are usually vigorously scrubbed by hand. This is usually done with hot water and detergent, and it helps remove any large particles, such as plaque. They may also be placed in a vibrating tray filled with cleaning solution, which can help remove very small particles.

The Centers for Disease Control and Prevention (CDC), the American Dental Association (ADA), OSAP, most state dental licensing boards, and dental handpiece manufacturers all recommend heat sterilization between patient uses. Virtually all handpieces currently in production are heat-tolerant, and those that are not can be retrofitted to allow heat-processing. Autoclaving and chemical vapor sterilization are considered accepted methods of heat sterilization. High-level disinfection via chemical germicides cannot be biologically monitored to assure sterility. Further, extended contact with chemical germicides may corrode handpiece components.

Sterilization in dentistry also involves killing the invisible germs on tools. Autoclaves are machines that are commonly used during sterilization in dentistry. These machines are usually made from large metal cylinders, and they are similar to pressure cookers. Once the tools are placed in the autoclave, they are sprayed with high-pressure steam. The high pressure inside this machine helps raise the steam to very high temperatures that are necessary for killing disease-causing micro-organisms.

The Sterilization Methods in Dentistry

Since many germs can be transferred simply by touching contaminated surfaces, dentists and dental assistants are typically very fastidious about disinfecting the surfaces in their offices and treatment rooms. Solid surfaces, such as counters and sinks, are generally wiped down with antibacterial spray. Portable folding chairs are also usually covered with disposable paper covers that are discarded after each patient. Dentists and their assistants also usually wear protective barriers, such as gloves and face masks, to help prevent spreading germs to their patients.

Disposable dental tools and supplies are some of the most important items when it comes to sterilization in dentistry. Some disposable dental supplies include bibs and masks wrapped in sterile packaging. Once these are used with one patient, they are simply thrown away.

Tools that can’t be thrown away, such as dental drills, are generally put through a very intensive dental sterilization process. First they are usually vigorously scrubbed by hand. This is usually done with hot water and detergent, and it helps remove any large particles, such as plaque. They may also be placed in a vibrating tray filled with cleaning solution, which can help remove very small particles.

Maintain sterilized instruments in the pouches or wrapping in which they were sterilized. If the packaging becomes torn or wet, the items must be repackaged and heat sterilized. Avoid mingling non-sterile packages with sterile ones. There should be a visible indicator, such as chemical indicators or color-change autoclave tape on the outside of each package to allow staff to easily discern sterilized instrument packages from those that have not yet been heat-processed.

Dry heat sterilizers have been used effectively in dental office for many years. Just as with any other sterilization method, dry heat sterilization is highly dependent upon the operator following the manufacturer’s instructions for cycle time, temperature, instrument packaging, and loading technique. Because dry air is not as efficient a heat conductor as moist heat at the same temperature, a much higher temperature is required for a dry heat unit to accomplish sterilization.

Sterilization in dentistry is very important, and dentists and dental assistants typically clean and disinfect most surfaces in a their offices and treatment rooms to help prevent the spread of germs. Disposable dental supplies are also used whenever possible. Tools that are not disposable are generally scrubbed by hand and placed in a machine known as a dental autoclave. This machine then disinfects the tools by spraying them with very high-pressure steam, which kills most micro-organisms. Any tools that can not be subjected to high heat or moisture are usually disinfected with chemicals.

What are the Effects of Dental Autoclave

A Packaging cleaned instruments prior to placing them in the sterilizer is a standard of care that protects instruments and maintains their sterility until they are ready for use on a patient. Unprotected instruments may be re-contaminated with dust and spatter or by coming into contact with any number of non-sterile surfaces during transport, storage, tray set-up, and operatory set-up.

Maintain sterilized instruments in the pouches or wrapping in which they were sterilized. If the packaging becomes torn or wet, the items must be repackaged and heat sterilized. Avoid mingling non-sterile packages with sterile ones. There should be a visible indicator, such as chemical indicators or color-change dental autoclave tape on the outside of each package to allow staff to easily discern sterilized instrument packages from those that have not yet been heat-processed.

Dry heat sterilizers have been used effectively in dental office for many years. Just as with any other sterilization method, dry heat sterilization is highly dependent upon the operator following the manufacturer’s instructions for cycle time, temperature, instrument packaging, and loading technique. Because dry air is not as efficient a heat conductor as moist heat at the same temperature, a much higher temperature is required for a dry heat unit to accomplish sterilization.

There have been some recommendations that dry heat be used only in situations where moist heat is not desirable due to the material, such as oils, powders, sharp instruments and glassware. However, the same source points out that dry heat provides excellent penetration and prevents the corrosion of metals. Since forced-air dry heat systems have very short sterilization cycles and are kind to high carbon steel instruments, they are very often used in orthodontic practices to re-process pliers and cutters.

Dental autoclaves are machines that are commonly used during sterilization in dentistry. These machines are usually made from large metal cylinders, and they are similar to pressure cookers. Once the dental equipment are placed in the autoclave, they are sprayed with high-pressure steam. The high pressure inside this machine helps raise the steam to very high temperatures that are necessary for killing disease-causing micro-organisms.

Any tools that can not be subjected to moisture or intense heat must be sterilized with other methods. Chemicals are often used during sterilization in dentistry as well. Some of the chemicals used to kill germs and sterilize dental tools are typically iodine or alcohol based, since both of these chemicals are very effective at killing germs.

How to Do the Sterilization

Steam dental autoclaves are the most commonly used type of heat sterilizer in dental practices. Two types of processes employ steam under pressure. The difference between the two is the manner in which the machine evacuates the air from the sterilization chamber and then introduces the steam.

Gravity displacement sterilizers rely on the forces of gravity to force air out of the chamber through air escape vents. The steam entering the chamber from the water reservoir displaces the air as it leaves the chamber. The combination of pressurization of the chamber, steam and a high temperature for a prolonged period has the ability to kill virtually all microorganisms. This is the most common type of autoclave found in dental offices in the United States. A typical cycle for wrapped instruments includes heat-up and pressurization time, followed by a 15-to-30-minute cycle during which sterilization is taking place (121°C at 15 psi). The sterilization cycle time decreases as the temperature is increased.

It is important to use cycle times and temperatures described in the owner’s manual, and never to interrupt the sterilization cycle to remove or add items, or for any other reason. Interruption of the cycle will result in instruments that are not sterile and therefore not safe for use on patients. After the sterilization cycle, the sterilizer must depressurize and the packs remain in the sterilizer for drying. The drying phase may take anywhere from 20-45 minutes. The unit must only be opened after completion of the drying cycle. Upon removal from the sterilizer, sterile packs must be stored in a clean, dry area. Packs that become wet, torn, contaminated, or otherwise compromised require resterilization.

Dry-heat sterilization employs high temperatures for extended periods to achieve sterilization of dental equipment. The method of heat circulation in dry-heat sterilizers is usually convection, which helps to ensure that the heat circulates throughout the sterilization chamber during the process. Mechanical convection is more effective; the sterilizer contains a fan or blower that continually circulates the heated air to maintain a uniform temperature throughout the chamber. Most commercially available dry-heat sterilizers on the market today are of this type.

The higher temperature of a dry-heat sterilizer means that paper will scorch and plastic will melt. Specialized packaging material is available for dry-heat sterilizers. Most handpieces will not tolerate the higher temperatures of a dry-heat sterilizer. Mechanically driven handpieces that contain turbines and bearings are susceptible to damage at higher temperatures. The manufacturer’s instructions should be checked for compatibility of instruments, devices, and materials with the unit and the handpiece manufacturer’s instructions should be followed for preparation of the handpiece prior to sterilization and for sterilization itself.